Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain.

نویسندگان

  • P L Penar
  • S Khoshyomn
  • A Bhushan
  • T R Tritton
چکیده

OBJECTIVE Glioblastoma multiforme is a malignant primary brain tumor associated with short patient survival despite aggressive treatment, in part because of its propensity to aggressively infiltrate into brain tissue. Glioblastoma multiforme is also unique because it is the only nonepithelial human tumor for which excessive activation of epidermal growth factor receptor (EGFR) has been consistently linked to tumor growth and patient survival, and EGFR activation promotes glioblastoma multiforme infiltration in vitro. METHODS Cocultures of human glioblastoma spheroids (derived from three separate patients) and fetal rat brain aggregates were examined for infiltration using confocal microscopy, in the presence of 0 to 100 mumol/L genistein, a tyrosine kinase (TK) inhibitor, and 3 mumol/L tyrphostin A25, a specific EGFR-TK inhibitor. RESULTS Infiltration (not attachment) was completely inhibited by genistein at 10 mumol/L, the IC20 for monolayer growth inhibition in two cell lines. Tyrphostin A25 at 3 mumol/L (the IC20 for monolayers) reduced invasion in a third cell line from 38.8 +/- 6.1% invasion-hour per hour (n = 5) to 2.9 +/- 1.2% invasion-hour per hour (n = 6) (P = 0.0002, two-tailed t test, 93% inhibition), and from 0.54 +/- 0.065% per hour (slope) to 0.028 +/- 0.018% per hour (P = 0.00001, 95% inhibition). Maximal percent invasion was reduced from 100 +/- 0 to 7.4 +/- 5.6% of the fetal rat brain aggregate. No change was detected in EGFR-associated tyrosine phosphorylation at those doses in monolayers by 32P immunolabeling, consistent with the known effects of low concentrations of TK inhibitors. An increase in expression of wild-type and truncated EGFR was demonstrated by Western blotting. Invasion was equally well inhibited by a monoclonal antibody to the high-affinity ligand binding domain of EGFR and not by antibody to an inactive domain. CONCLUSION Our observations support the role of EGFR activation as a determinant by which glioblastoma invades normal brain tissue, and we show that invasion can be effectively inhibited at much lower concentrations of TK inhibitors than are necessary for growth suppression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors

Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...

متن کامل

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Assessment of epidermal growth factor receptor status in glioblastomas

Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...

متن کامل

A Leak Pathway for Luminal Protons in Endosomes Drives Oncogenic Signaling in Glioblastoma

Epidermal growth factor receptor (EGFR) signaling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective, and EGFR persists on the plasma membrane to maintain tumor growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover...

متن کامل

A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma.

Epidermal growth factor receptor (EGFR) signalling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective and EGFR persists on the plasma membrane to maintain tumour growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurosurgery

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 1997